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Abstract

Dynamics of strongly interacting trapped dilute Fermi gases is investigated at zero temperature. As an example of application
we consider the expansion of the cloud of fermions initially confined in an anisotropic harmonic trap, and study the equation of
state dependence of the radii of the trapped cloud and the collective oscillations in the vicinity of a Feshbach resonance.
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The newly created ultracold trapped Fermi gases equation of state dependendéfee radii of the trapped
with tunable atomic scattering lengfi—10] in the cloud and the collective oscillations near a broad Fes-
vicinity of a Feshbach resonance offer the possibil- hbach resonance at a magnetic fidld= 820+ 3 G
ity to study highly correlated many-body systems [16—18]
including the cross-over from the Bardeen—Cooper— We consider a Fermi gas comprising a 50-50
Schrieffer (BCS) phase to the Bose—Einstein conden- mixture of two different states confined in a harmonic
sate (BEC) of moleculgd,11-15] trap Vexi(r) = (m/2)(0? (x? + y?) + 0?z?). The s-

In this Letter we report our investigation of the dy- wave scattering length between the two fermionic
namics of the strongly interacting dilute Fermi gas (di- species is negative,< 0.
lute in the sense that the range of interatomic potential ~ Our starting point is the single equation approach
is small compared with inter-particle spacing) at zero to the time-dependent density-functional thefi9].
temperature. As an example of application we con- The basic of this strategy is to construct the following
sider the expansion of the cloud &fi atoms initially equation
confined in an anisotropic harmonic trap, study the

L' n? _,
ih— =——V lp"“/e)(tlp'i‘‘/)(clp (1)
ot 2m
. - _ - 2 ..
T Corresponding author. that yields t_he same(r,t) = |¥ (r,t)] as the original
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zubareva@physics.purdue.edu (A.L. Zubarev). is controlled by an effective single-particle potential
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Vyc(7, ). The central problem is the approximation for
the xc potential. This is in general a nonlocal func-
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tional of the density that depends on the history of the where a universal paramet@r [9] is negative and

system (on the behavior of the density at times r).

The simplest approximation is to ignore nonlocality
in space and retardatiom itime. This leads to the
adiabatic local density approximation

. one(n)
VXC(ra t) = [ 8 ] )
n n=n(¥,t)

wheree is the ground state energy per particle of the
homogeneous system ands the density. The right-
hand side oEg. (2)is the local density approximation
for the ground-state xc potential, but it evaluated at

@)

8] <1[30-32]
We also consider the following approximations for
e(n):

e =E (§ _ (2/(3m))krlal )
~ P\ 57 17 (6/351)) (11— 2InDkelal )’
()
and
_ (3, 8ikelal + S2(kela))®
E(”)_EF(E_21+53kp|a|+34(kp|a|)2)’ ©

the time-dependent density. Notice that in the above Wheres; = 0.106103,62 = 0.187515,53 = 2.29188,

equation is the total density of the gas given by the
sum of the two spin component.

The adiabatic local density approximation is a
remarkably good approximation if the energy gap is
much larger than the oscillator energigs,, hw,
[20,21] Itis expected that this condition is satisfied for
small temperaturf20,21] Here we notice Ref§22—
24] who argue that the ground state of the mixture of
two species of fermions with different densities (mass)
contains both a superfluid and a normal Fermi liquid.
We do not consider this asymmetrical mixture in the
Letter.

The ground state energy per partici€n), in the
low-density regime,kgla] < 1, can be calculated
using an expansion in power bf|a|

10 37
— 0.00914klal)’

3 1
e(n) = 2E|:<— — —kflal +o.055661(kp|a|)2

— 0.018604kal)* + - ) 3)
n2k2 .

whereEr = —E andkr = (372n)/3. The expansion
(3) is valid for 3D. For the case of dimensiods< 3,
it is known that the quantum-mechanical two-bady
matrix vanishes at low energi§25]. The first term in
Eq. (3)is the Fermi kinetic energy, the second term
corresponds to the mean-field predict[@6], the next
two terms were first considered in Refg7,28] and
Ref.[29], respectively.

In the a — —oo limit (the Bertsch many-body
problem, quoted in Re{30]) ¢(n) is proportional to
that of the noninteracting Fermi gas

84 =1.11616.

While Eqg. (5) [31] reproduces first three terms
of expansion(3) in low-density regime and approxi-
mately valid in unitary limit,8 = —0.67,Eq. (6)repro-
duces first four terms of expansi@8) in low-density
regime and in unitary limitkpa — —oo, reproduces
exactly results of the recent Monte Carlo calculations
[32], B = —0.56.

It can be proved33] that every solution of the
equation

ow h?
0¥ _

d
= G2y e 4 20
2m

n

ot ’ ")

is a stationary point of an action corresponding to the
Lagrangian density

ih( ow* ow
Lo= 2wl g+
0 2( a1 a:)
2

h
+ — |V + e(m)n + Ve,
2m

®)

which for ¥ = ¢4, 1/2(7 +) can be rewritten as

. 72 n?
Lo=hn + — (V/m)2 + —n(Ve)?
2m 2m

+em)n + Vexin. 9

The only difference from equations holding for bosons
[33,34]is given by density dependencecf:). We do
not consider three-body recombinations, since these
processes play an important role near p-wave two-
body Feshbach resonan@s].

Let us first discuss the expansion of the fermionic
superfluid in ther — —oo limit, Eq. (4) In the hydro-
dynamic approximation (neglecting quantum pressure
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Aspect Ratio

Expansion Time (ms)

Fig. 1. Aspect ratio of the cloud of th%¥ = 7.5 x 10% SLi atoms as a function of time after release from the trap & 27 x 6605 Hz,
w; = 2w x 230 Hz). The circular dots indicate experint@él data from the Duke University groyp]. The solid line and the dashed line
represent theoretical calculations in the unitary limit¢ —oo) including the quantum pressurerteand in the hydrodynamic approximation,
respectively.

term,%(vﬁ)z, in Eq. (9) the corresponding Euler—  In this case the scaling parameters obey the following
Lagrange equation admit the simple scaling solution, equations
n(r,t) = no(x;/b;(t)) [20]. We note here that the hy-

drodynamic behavior of a cold Fermi is not in
y 962 w2y B w?(1— )

general direct experimental evidence for superfluidity 5, — — , (11)
[36-38] U N
We take into account the quantum pressure by
finding the optimal ground state ener@@] atr =0, 5;(0) =1 andb; (0) =0
3 The predictions ofEqs. (11) for aspect ratio,
Eo — max |: ﬁ+ —(1+,3)1/2N1/3 w?\/l——ysz/(wLsz(t)_), are reported in
N vorvre| 2 Fig. 1 show that the effect of inclusion of the quan-

3 tum pressure term on the expansion of superfluid is
% 1 w3 | 10 about 1%. For the reminder of this Letter we will use
[1 vieon) (10) the hydrodynamic approximation.
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Fig. 2. Radial compressial frequency in unit ofv; as a function of the dimensional parame(erl/Ga/aho)—l. In the unitary limit,
a — —oo (e), One expectw/w| = /10/3~ 1.826. The solid line and the dashed line represkatresults of theoretical calculations using

equations of stategs. (6) and (5)respectively.

Now we consider a general time-dependent har- whereb;(0) = 1, b;(0) = 0 andw; = w; (0) fix the

monic trap, Vext(7, 1) = (m/2) Yo, w?(t)x?, and a
generale(n). A suitable trial function can be taken
as(F, 1) = x (1) + (m/(2h) X0y mi(Ox2, n(F 1) =
no(x;/bi(t))/ ]_[j b;. With this ansatz, the Hamilton

principle, § [dt [ Lod®r = 0, gives the following
equations for the scaling parametéys
bi + @?(1)b;
o} JIn?de ) /dnlumnoi 11 b, 4
bi  [[n?de(n)/dn)y—nys) d3r

3
r]_[b.,:o,
j

12)

initial configuration of the system, corresponding to
the densityng (7).

The release energy which corresponds to an inte-
gral of motion ofEq. (12)is expressed by

d3r

/ng(V) de(no)

gt 152
I’EI_N 2a)i2 dno

+ /noe (m)/]:[bj) d3ri|,

(13)
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Fig. 3. Axial cloud size of strongly interactinl_i atoms after normalization to aon-interacting Fermi gas witlV = 4 x 10° atoms as a
function of the magnetic fiel@. The trap parameters aige, = 27 x 640 Hz,w, = 27(600B/ kG + 32Y/2 Hz. The solid line, dashed line and
circular dots represent the results of treal calculations using equations of st&@ (6) Eq. (5)and experimental data from the Innsbruck
group[10], respectively.

1/2
and for the case af(n) ocn” + \/(4+ 2K + 322 + ,C;LZ)Z — 410+ 6K)A2] ,
- 21 |:y b? 1 } (14)
=——5+=—=1|
© By +2[202 [I;b) where « = [n3d%/(dnd)d3/ [ n3de/(dno)d®r.

wherey is the chemical potential. For an elongated trap, <« 1, we can rewritdeq. (14)

ExpandingEgs. (12)around equilibrium §; = 1) as
we get in the case of anisotropic trapping = o, = wrad~ w1 N+ 2k. (15)
w,,w;/w) = 1) the following result for the frequency
of the radial compression mode Note thatEq. (14)for the case ofe(n) o« n” was
o, considered in several papg49].
Wrad = ﬁ[4+ 2 + 332 4+ kA2 In Fig. 2 we present the calculations @faq

using two approximationggs. (5) and (6)for the
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equation of state(n) (to calculate the ground-state
density we have used a highly accurate variational
approach of Ref[41]). The curves explicitly show
the nonmonotonic behavior @f g in the agreement
with a schematic interpolation of Ref42]. It can
be seen fronfig. 2 that the difference between two
approximationsigs. (5) and (6)is less than 0.7%.
Our calculated results for the axial cloud size of
strongly interactingPLi atoms as a function of the
magnetic field strengtB are compared with the recent
experimental dat410] in Fig. 3. This comparison
shows that although both approximatioiss. (5) and

(6), give a reasonable agreement with experimental

data, the equation of state froEq. (6)leads to the
better description of the experimental curve. We have
used the data from R€ffL7] to converta to B.
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